Matrix-vector multiplication

A vector in \mathbb{R}^n is an ordered n-tuple of real numbers. We can write it as a column vector: $\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$ or as a now vector (a_1, a_2, \dots, a_n) .

Just like with matrices, we can take the sum of two n-vectors, and we can take the scalar multiple of a vector.

If A is an mxn matrix, we can write

$$A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix}$$

where each \vec{a}_i is one of its columns. If $\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}_J$

a vector in R^h, we define the product

$$A\vec{x} = \chi_1\vec{a}_1 + \chi_2\vec{a}_2 + \dots + \chi_n\vec{a}_n.$$

Note that we can only multiple a matrix and a vector in IR^h if the matrix has h columns.

$$\mathbf{Fx}: \mathbf{A} = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & 2 \end{bmatrix}, \quad \vec{\mathbf{x}} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}.$$

Then
$$A\vec{x} = \binom{2}{0} - \binom{3}{1} + \binom{3}{2} = \binom{2}{5}.$$

Notice that we started w/a vector in \mathbb{R}^3 and ended with a vector in \mathbb{R}^2 .

Ex: let
$$T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $\vec{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ an arbitrary
vector. Then $T\vec{a} = a_1\begin{bmatrix} 0 \\ 0 \end{bmatrix} + a_2\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + a_3\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \vec{a}.$

So multiplication of I with a vector gives the same vector back. I is called the 3×3 <u>identity matrix</u>.

Properties of matrix-vector multiplication:

1)
$$A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y}$$

matrix vectors
2) $A(a\vec{x}) = a(A\vec{x}) = (aA)\vec{x}$
scalar
3) $(A+B)\vec{x} = A\vec{x} + B\vec{x}$

How does this relate to systems of equations?

Consider the system
$$2x_1 + 2x_2 + 3x_3 = 1$$

 $2x_1 - x_3 = -1$

We can rewrite this as an equality of vectors:

$$\begin{bmatrix}
\chi_1 + 2\chi_2 + 3\chi_3 \\
2\chi_1 - \chi_3
\end{bmatrix} = \begin{bmatrix}
1 \\
-1
\end{bmatrix}, which becomes$$

$$\begin{cases} \gamma_{1} \\ 2\gamma_{1} \end{pmatrix} + \begin{pmatrix} 2\gamma_{2} \\ 0 \end{pmatrix} + \begin{pmatrix} 3\gamma_{3} \\ -\gamma_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\Rightarrow \gamma_{1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \gamma_{2} \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \gamma_{3} \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\Rightarrow \int_{2}^{1} \begin{pmatrix} 2 & 3 \\ 2 & 0 & -1 \end{pmatrix} \begin{pmatrix} \gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$for efficient for equations$$

$$More generally, if we have a system of equations$$

in a variables,
$$\pi_1, ..., \pi_n$$
, $w/$ coefficient matrix A_j
constant vector \vec{b} and set
 $\vec{x} = \begin{pmatrix} \pi_1 \\ \vdots \\ \pi_n \end{pmatrix}$. Then we can express the same system
as $A \vec{\pi} = \vec{b}$, called the matrix form of the system.
Note that the corresponding augmented matrix is $[A | \vec{b}]$

Suppose
$$\vec{x}_1$$
 is a solution to $A\vec{x} = \vec{b}$ and \vec{x}_0 is a solution
to $A\vec{x} = \vec{O}$, The associated homogeneous system.
the ovector
(each entry is 0)

Then notice the following:

$$A\left(\vec{x}_{1}+\vec{y}_{0}\right)=A\vec{x}_{1}+A\vec{x}_{0}=\vec{b}+\vec{0}=\vec{b}.$$

Thus,
$$\vec{x}_1 + \vec{x}_2$$
 is also a solution to $A\vec{x} = \vec{b}$.
In fact, every solution has this form:

Theorem: If
$$\vec{x}_1$$
 is a solution to the system $A\vec{x} = \vec{b}$, then
every solution \vec{x}_2 to the system is of the form
 $\vec{x}_2 = \vec{x}_1 + \vec{x}_0$

where \vec{x}_{0} is some solution of the associated homogeneous system $A\vec{x} = \vec{0}$.

$$\sum_{i=1}^{n} x_{i} + 2x_{i} - 3x_{3} + x_{4} = 1$$

$$2x_{1} + 3x_{2} - x_{3} - x_{4} = -2$$

 $\chi_{4}^{*} = t$

$$\begin{bmatrix} 1 & 2 & -3 & 1 & | & 1 \\ 2 & 3 & -1 & -1 & | & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & -3 & 1 & | & 1 \\ 0 & -1 & 5 & -3 & | & -4 \end{bmatrix}$$

$$\xrightarrow{} \begin{bmatrix} 1 & 2 & -3 & 1 & | & 1 \\ 0 & 1 & -5 & 3 & | & 4 \end{bmatrix} \xrightarrow{} \begin{bmatrix} 1 & 0 & 7 & -5 & | & -7 \\ 0 & 1 & -5 & 3 & | & 4 \end{bmatrix}$$

$$\begin{array}{c} \chi_1 = -75 + 5t - 7 \\ \chi_2 = 5s - 3t + 4 \\ \chi_3 = s \end{array}$$

General solution to homogeneous system:

$$\begin{bmatrix} -7\\5\\1\\0 \end{bmatrix} + t \begin{bmatrix} 5\\-3\\0\\1 \end{bmatrix}$$

(Check this by setting the constants in the original system equal to 0!)

The dot product

Def: If
$$\vec{a} = (a_1, \dots, a_n)$$
 and $\vec{b} = (b_1, \dots, b_n)$, two
vectors in \mathbb{R}^n , the dot product of \vec{a} and \vec{b} is
 $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$.

The dot product gives us another way to describe matrix-vector multiplication:

e.g. if
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}$$
 and $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ a vector in $[R]$

men

$$A \overrightarrow{x} = \chi \begin{bmatrix} 1\\5\\9 \end{bmatrix} + \chi_2 \begin{bmatrix} 2\\6\\10 \end{bmatrix} + \chi_3 \begin{bmatrix} 3\\7\\11 \end{bmatrix} + \chi_4 \begin{bmatrix} 4\\8\\12 \end{bmatrix}$$
$$= \begin{bmatrix} \chi_1 + 2\chi_2 + 3\chi_3 + 4\chi_4\\5\chi_1 + 6\chi_2 + 7\chi_3 + 8\chi_4\\9\chi_1 + 10\chi_2 + 11\chi_3 + 12\chi_4 \end{bmatrix} \xleftarrow{each entry is the}_{dot product of \vec{\chi}}_{with the corresponding}_{vow of the matrix}$$

It turns out that matrices are determined by how They multiply with vectors. That is:

Theorem: If A and B are man matrices such that for every n-vector \vec{x} , $A\vec{x} = B\vec{x}$, then A = B. Why? Let $\vec{e}_i = \begin{bmatrix} i \\ i \end{bmatrix}, \vec{e}_s = \begin{bmatrix} i \\ i \end{bmatrix},$ etc. so that \vec{e}_i is the vector with its entry I and remaining entries O.

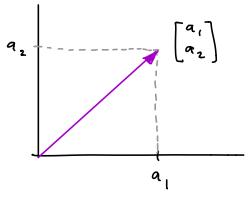
Then if
$$A = [\vec{a}_1 \dots \vec{a}_m]$$
, $B = [\vec{b}_1, \dots, \vec{b}_m]$
columns

we have $A\vec{e}_i = B\vec{e}_i$ $\Rightarrow 0\vec{a}_1 + 1\vec{a}_i + \dots + 0\vec{a}_m = 0\vec{b}_1 + \dots + 1\vec{b}_i + \dots + 0\vec{b}_m$ $\Rightarrow \vec{a}_i = \vec{b}_i$.

So the it columns of A and B are the same. But this holds for each i, so A = B.

Transformations

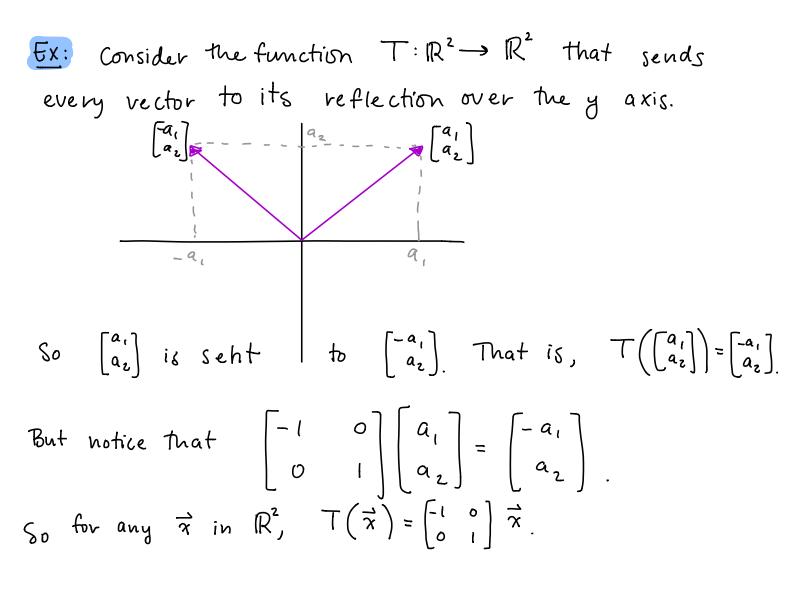
One way to think about vectors in \mathbb{R}^2 is geometrically as points in the plane. We usually draw them as an arrow from the origin.



Similarly in \mathbb{R}^{3} , we can identify vectors with points in 3-dimensional space. x_{1} A transformation is a special kind of function from \mathbb{R}^n to \mathbb{R}^m That can be described by a matrix.

Recall that, in general, a function f from \mathbb{R}^{h} to \mathbb{R}^{m} , written $f: \mathbb{R}^{h} \to \mathbb{R}^{m}$, is a rule that assigns each vector in \mathbb{R}^{h} to a unique vector in \mathbb{R}^{m} .

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is a transformation if That "hule" is given by multiplying the vector in \mathbb{R}^h by an man matrix to obtain the output in \mathbb{R}^m .



This is an example of a transformation. More generally, we

have the following definition:

Def: A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if there is some $m \times n$ matrix A such that

$$\top(\vec{x}) = A \vec{x}$$

for all \$ in IR."

50

Sometimes we can give a formula to describe the transformation as well.

Ex: let
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 be the function given by
 $T \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} \chi_1 - \chi_2 \\ \chi_3 - \chi_2 \end{bmatrix}.$

Is this a linear transformation? Yes! Notice that

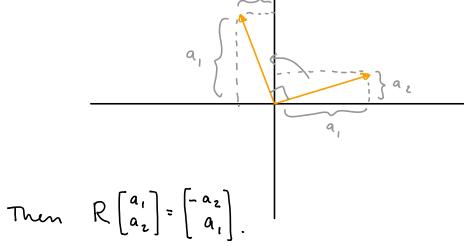
$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} \chi_1 - \chi_2 \\ \chi_3 - \chi_2 \end{bmatrix}$$
$$\top (\vec{\chi}) = \begin{bmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \vec{\chi}.$$

(soon we'll talk more about finding the matrix that works.)

We can also start with a matrix and use it to define a transformation:

Def: If A is an mxn matrix, the transformation induced
by A, written
$$T_A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 is defined
 $T_A(\vec{x}) = A \vec{x}$, for all \vec{x} in \mathbb{R}^n .

Ex: Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ denote the function that rotates a vector 90° counterclockwise about the origin. Is this a transformation?



We can describe this with a matrix:

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix}$$

So R is the transformation induced by
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

Def: (1) The zero transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the transformation induced by the O matrix, and is given by $T(\vec{x}) = \vec{0}$. It is denoted T=0.

(a) The identity transformation
$$T: \mathbb{R}^n \to \mathbb{R}^n$$
 is denoted
 $T = I_{\mathbb{R}^n}$, and is given by $T(\vec{x}) = \vec{x}$.
It is the transformation induced by the nxn identity
matrix $I_n = \begin{bmatrix} 1 & & \\ 0 & & \\ 0 & & \\ 0 & & \\ \end{bmatrix}$ (mes on diagonal, zeros everywhere else).
(a) $T[y] = \begin{bmatrix} x + ay \\ y \end{bmatrix}$
induced by the matrix $A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ is called an
 $\frac{x - shear}{a^2}$ of \mathbb{R}^2 . If, for example $a = \frac{1}{4}$, we can
visualize it geometrically:
 $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$
 $T = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$

Note that not every geometric function is a transformation!

Ex: Consider the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ that translates a point one unit to the hight. i.e. $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+1 \\ y \end{pmatrix}$. Why isn't this a linear transformation?

Suppose there is some matrix A such that $f(\vec{x}) = A\vec{x}$. Then, in particular, $f(\vec{o}) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = A\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

But $A \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ for any matrix! so this is impossible.

Practice problems: 2.2: 2,4,5ab, 8a,9,11bd,12,18